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Abstract
Point clouds have become the preferred data format for a
variety of tasks in 3D vision and graphics. However, raw
point clouds often contain significant noise. This paper in-
troduces the Adaptive Stop Denoising Network (ASDN), a
novel approach aimed at restoring high-quality point clouds
from noisy data. Our method is built upon a pivotal obser-
vation: during the denoising phase, high-noise points draw
more focus from the network, which may suppress the points
that have already been effectively denoised. This observation
has led us to develop an adaptive strategy that ceases denois-
ing already cleaned points to prevent over-denoising, while
continuing to refine points that remain noisy. We employ a
U-Net architecture complemented by an adaptive classifier,
which utilizes a recoverability factor to assess the comple-
tion of denoising and make dynamic decisions about when to
halt the process. Our method not only demonstrates superior
noise removal efficiency but also preserves geometric details
more effectively, reducing over- or under-denoising artifacts.
Extensive experiments and evaluations demonstrate that our
method outperforms the state-of-the-art both qualitatively and
quantitatively.

Code — https://github.com/git-guocc/ASDN

Introduction
Point clouds are the predominant data for describing the
shapes and structures of real-world objects. With the rapid
advancement of 3D acquisition equipment such as LiDAR
and depth cameras, more and more point clouds are rou-
tinely obtained and wildly employed in various industries,
such as autonomous driving, robotic navigation, and archi-
tectural modeling. However, the raw point clouds are in-
evitably contaminated by noise, resulting in declining point
cloud quality. Therefore, point cloud denoising, which aims
to restore point cloud quality, is a fundamental issue in 3D
vision. Despite the significant progress, traditional denois-
ing methods are still limited by their reliance on local point
cloud information and their struggle with complex noise pat-
terns (Liu et al. 2023). Furthermore, in order to produce
promising results, traditional methods typically require nu-
merous parameters and laborious parameter tuning.
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The success of neural networks on point clouds, such
as PointNet (Charles et al. 2017a), PointNet++ (Charles
et al. 2017b), and DGCNN (Wang et al. 2019), has re-
cently led to the adoption of deep learning approaches for
point cloud denoising. For example, PointCleanNet (Rako-
tosaona et al. 2020) employs a two-stage learning network
that first classifies and removes outliers and then estimates
correction vectors to project noisy points onto the under-
lying surface for noise removal. Pointfilter (Zhang et al.
2021) shares a similar network structure to PointClean-
Net, but it elaborately designs a bilateral loss function that
considers both point and normal information to preserve
sharp edges. DMRDenoise (Luo and Hu 2020) performs
manifold reconstruction during the downsampling process
to reduce the impact of noisy points. Score (Luo and Hu
2021) estimates the noise-convolved distribution score from
noisy input and uses gradient ascent to iteratively relocate
noisy points to the underlying surface for denoising. Itera-
tivePFN (de Silva Edirimuni et al. 2023b) simulates progres-
sive smoothing using an adaptive loss function and several
iterative modules.

Figure 1: Our main observation and motivation. Top: at a
certain denoising phase, points in a high-noise state may
lead to the network focusing more on them, potentially caus-
ing points in a low-noise state to be suppressed and neg-
atively impacted in the subsequent phase. Bottom: this in-
sight inspires us to stop denoising the well-denoised points
and continue to denoise those points in the high-noise state.

It is crucial to realize that during the denoising process,
the noise and geometry information are intricately inter-
twined and inherently complicated. Most existing learning-



based methods consider denoising as a holistic and homo-
geneous smoothing process, making them unsuitable for
dynamic and heterogeneous information recovery in latent
space. Thus, the existing methods cannot adapt well to com-
plex noise and varying surface regions, resulting in over- or
under-denoising artifacts of the denoising results. The com-
plexity of noise and varying surface regions presents signif-
icant challenges in the denoising task.

To tackle the challenges mentioned, we introduce entropy
to quantify the quality of point clouds. The entropy value re-
flects the data randomness and uncertainty, making it a cru-
cial indicator to evaluate the point cloud quality. Therefore,
we reformulate denoising as an entropy restoration process,
aiming to restore the entropy of the denoised point cloud as
close as possible to its noise-free counterpart.

To achieve this, we propose a novel metric, the recover-
ability factor ρ, to measure the challenge of entropy restora-
tion. ρ is calculated as the entropy ratio in the noisy point
cloud to that in the clean one. A lower ρ indicates a more
challenging restoration. Then, we develop the Adaptive Stop
Denoising Network (ASDN), a U-Net-based model that in-
tegrates an adaptive classifier with the recoverability factor.
Our method leverages the adaptive classifier to dynamically
assess the denoising process, allowing for early termination
for those already well-denoised points.

As shown in Figure 1, our method decides to stop denois-
ing low-noise points with a high recoverability factor ρ, in-
dicating these points are already well-denoised, while con-
tinuing to denoise those high-noise points with a lower ρ. In
other words, our method can stop denoising at well-denoised
points to prevent over-smoothing artifacts, while continu-
ing to denoise high-noise points to remove noise completely.
In contrast, when the previous methods encounter relatively
high- and low-noise points at a given denoising moment.
Due to the supervision of the loss function, points in a high-
noise state have a greater potential for loss decreasing, which
may drive the network to become aggressive and prioritize
fitting these points. Unfortunately, this aggressive behavior
suppresses and negatively impacts the well-denoised points
in the subsequent phase, as shown in Figure 1.

Our main contributions are summarized as follows:

• We find that stopping well-denoised points early will po-
tentially prevent over-denoising artifacts, providing new
cues for point cloud denoising.

• We introduce entropy as a measure for characterizing
point cloud complexity. Furthermore, we define the re-
coverability factor as the entropy ratio between noisy
and clean point clouds to evaluate the difficulty of en-
tropy restoration. This factor guides our adaptive denois-
ing procedure.

• We design a U-Net-based network, integrating the adap-
tive classifier that utilizes the recoverability factor to dy-
namically evaluate the denoising process and determine
whether to halt it early for already well-denoised points.

• We qualitatively and quantitatively demonstrate that our
method outperforms state-of-the-art approaches on syn-
thetic and real-scanning benchmarks.

Related work
Given the multitude of point cloud denoising techniques, our
review is confined to deep learning approaches that are di-
rectly relevant to our method.

Estimating Dispalcement Vectors for Denoising
Several methods directly infer point displacements towards
the underlying surface. PointCleanNet (Rakotosaona et al.
2020) infers outliers to remove them, then predicts displace-
ments for the remaining noisy points for denoising. Pointfil-
ter (Zhang et al. 2021), leveraging a similar network archi-
tecture, enhances this process with a bilateral loss function
that integrates both point and normal data to preserve sharp
features. Chen et al. (2022) proposed a recurrent network
adept at capturing multiscale feature representations. Li and
Sheng (2023) introduced a unified framework that concur-
rently eliminates outliers and reduces noise within a single-
stage model. IterativePFN (de Silva Edirimuni et al. 2023b)
emulates a progressive smoothing process, employing a pro-
gressive loss to incrementally refine denoised points toward
the clean surface.

Two-phase Point Cloud Denoising
Two-phase approaches first smooth noisy normals before
updating point positions. Lu et al. (2020) divided the noisy
point cloud into two point sets, only inferring multiple nor-
mals on the feature point set to preserve geometry features.
Wei et al. (2021) employed a dual neural network to filter
noisy normals, leveraging geometric cues. Zhou et al. (2022)
and Zhang et al. (2024) devised a coarse-to-fine technique
that treats normal filtering and refinement as two separate
tasks, thereby enhancing the quality of the resulting normals.
Recently, there have been several methods of exploring
jointly denoising and normal filtering. de Silva Edirimuni
et al. (2023a) utilized a contrastive learning approach to
train a decoder capable of outputting vectors encompassing
both denoised points and normals. In contrast, PCDNF (Liu
et al. 2023) and PN-Internet (Yi et al. 2024) adopt a multi-
task learning framework, utilizing two interlinked network
branches that concurrently restore noisy points and normals.

Inferring Underlying Surfaces for Denoising
Certain denoising techniques aim to infer clean underlying
surfaces from noisy point clouds for noise removal. TotalDe-
noising (Hermosilla, Ritschel, and Ropinski 2019), for in-
stance, employs an unsupervised method to project noisy
points onto a clean surface, utilizing spatial priors. DMRDe-
noise (Luo and Hu 2020) first identifies an underlying down-
sampled surface, which serves as a basis for reconstruct-
ing a clean surface. Following this, it upsamples points on
the reconstructed surface to achieve denoising. Score (Luo
and Hu 2021), on the other hand, commences by estimating
the noise-convolved distribution score from the noisy input
and subsequently employs gradient ascent optimization to
restore point clouds. Zhao et al. (2022) introduced an ap-
proach that perturbs embedding features in the latent space,
capturing the inherent commonalities to reconstruct the la-
tent clean surface. Mao et al. (2022) developed PD-Flow, a



Figure 2: Architecture of the Adaptive Stop Denoising Network. The network consists of L layers, with the encoder acting as
the denoising unit. During this phase, our Adaptive Classifier predicts the recoverability factor ρ of the current noisy point set,
assesses the completion level of denoising, and dynamically chooses λ to terminate the denoising process. This timely transition
to the decoder accelerates the point cloud recovery process.

framework utilizing normalizing flows for the Euclidean-to-
latent space mapping, aimed at restoring noisy point clouds.
Chen et al. (2023) leveraged gradient fields to project noisy
points towards the underlying clean surface, facilitating con-
vergence.

Method
Main Backbone
Our Adaptive Stop Denoising Network (ASDN), grounded
in the U-Net architecture, comprises multiple encoder and
decoder modules.

To obtain the inputs of ASDN, we divide a given noisy
point cloud P into overlapped point cloud patches {P},
where P is defined as: P = {xi|xi ∈ KNN(xcenter, P, n)},
where KNN(xcenter, P, k) represents finding the nearest k
points in P to a reference point xcenter. We set n = 1000

in our ASDN. As the denoised patches {P̂} have overlap-
ping regions, we employ the stitching strategy outlined in
(de Silva Edirimuni et al. 2023b) to generate the final de-
noised point cloud P̂ .

The ASDN framework is depicted in Figure 2. Initially,
the point cloud patch P undergoes MLP to capture high-
dimensional information f0 ∈ Rn×d. Then, our encoder, de-
noted El, takes fl−1 as input and generates encoder feature
fl:

fl = El(fl−1) ∈ Rnl×dl , l = 1, 2, ..., λ, (1)

where nl and l represent the number of points and the feature
dimension at layer l respectively, and λ ranges from 2 to L,
with L being the total number of layers in ASDN, set to 4 in
our configuration. After that, our decoder, denoted Dl, takes
the decoder feature hl (hλ = fλ) and the encoder feature
fl−1 to produce the decoder feature hl−1 as follows:

hl−1 = Dl(hl, fl−1), l = 2, . . . , λ. (2)

Finally, we infer the displacement vectors ∆P of the
noisy patch P from the uppermost decoder feature by a MLP
as

∆P = MLP(h1). (3)
Thus, for P , we can obtain the restored point cloud as

P̂ = P +∆P. (4)

Point Cloud Entropy and Recoverability Factor
Entropy, as a fundamental concept in information theory,
quantifies the intrinsic unpredictability within data, reflect-
ing data randomness and disorder (Shannon 1948). In order
to evaluate the point cloud quality, we introduce the metric
of point cloud entropy. This quantifies the spatial distribu-
tion and density of a given point cloud, thereby revealing
structural complexity and inherent variability of the point
distribution. Given a point set P , the procedure of calculat-
ing point cloud entropy is outlined in Algorithm 1.

However, point cloud entropy cannot directly measure the
denoising difficulty. To leverage point cloud entropy in de-
noising, we propose the recoverability factor, which is the
ratio of noisy and clean point cloud entropies:

ρ =
H(P)

H(P)
. (5)

This factor, with its adaptable nature, inherits entropy char-
acteristics and is tailored for denoising and addressing issues
arising from diverse resolutions and point distributions. A
lower ρ signifies a more challenging recovery process, im-
plying higher noise levels or greater complexity within the
point cloud, and vice versa. The recoverability factor guides
our classifier in deciding when to persist with denoising or to
halt early, thus maintaining an optimal equilibrium between
noise removal and preservation of geometry features.



Figure 3: In our ASDN network, the encoder and decoder modules are specialized for point cloud denoising and recovery,
respectively. The encoder’s core is a residual expansion that integrates local feature aggregation (LA), while the decoder is
equipped with cross-attention.

Algorithm 1: Point Cloud Entropy Calculation

Input: Point set P ∈ Rn×3, voxel size v
Output: Point cloud Entropy H(P)

1. Voxelization: Divide P into voxels {Vo} with
voxel size v.

2. Point Counting: For each voxel Vo count its
points:

δo =
∑
i

I(xi ∈ Vo),

where I is the indicator function that returns 1 if the
point xi is within voxel Vo, or 0 otherwise.

3. Probability Calculation: Normalize the point
counts:

qo =
δo
n
.

4. Entropy Calculation: Compute the Shannon
entropy:

H(P) = −
∑

{qo|qo>0}

qo log qo.

To effectively map the recoverability factor ρ to the stop-
ping layer λ within our U-Net architecture, we employ a
non-linear transformation as follows:

λ = ⌈L− (L− 1) · log(γ · ρ+ 1)⌉ , λ ∈ {2, . . . , L}, (6)

where γ is a parameter to control the degree of non-linearity
mapping. The ceiling function ⌈·⌉ is utilized to enforce λ as
an integer value, thereby ensuring that the stopping layer λ
adaptatively selection based on ρ.

Adaptive Classifier
Our adaptive classifier network, constructed with EdgeConv
layers from DGCNN (Wang et al. 2019), can infer the re-

Figure 4: Our Adaptive Classifier, utilized to predict the re-
coverability factor ρ̂ of the current point set.

coverability factor from the current point set in the denois-
ing process. Then, it is straightforward to derive the stopping
layer in our U-Net architecture from (6).

Given a point set P ∈ Rn×3, a k-nearest neighbor graph
G = (V, E0) is constructed based on the 3D Euclidean dis-
tance, with V as vertices and E0 as edges. The raw feature
for each point xi ∈ P is computed as follows:

g0i =
∑

j:(i,j)∈E0

MLP(xi ∥ (xi − xj)), (7)

where (i, j) denotes an edge and ∥ represents concatenation.
The subsequent feature vectors are similarly defined as:

gmi =
∑

j:(i,j)∈Em

MLP
(
gm−1
i ∥

(
gm−1
i − gm−1

j

))
, (8)

with m ∈ {1, 2} and Em is the set of edges updated based
on the features {gm−1

i } from the previous layer. These in-



termediate features are concatenated to form gi as

gi = g0i ∥ g1i ∥ g2i . (9)

A dynamic graph convolution operation is then applied to
the concatenated features:

g = {
∑

j:(i,j)∈E3

MLP (gi ∥ (gi − gj))}, (10)

where E3 is the set of edges updated based on the features
{gi}. The notation {·} encapsulates the feature set for the
point set P . Subsequently, consecutive fully connected lay-
ers are applied to g to predict the recoverability factor, which
is a scalar value:

ρ̂ = MLP

(
1

n

n∑
i=1

MLP (MLP(g))

)
. (11)

Encoder
Our encoder is structured around residual expansion, utiliz-
ing local aggregation (LA) blocks as depicted in Figure 3.
The l-th layer of our encoder, denoted as El, takes fl−1 and
a point set Pl−1 as inputs and applies two sequential LA
blocks to extract features {f1

l−1, f
2
l−1}. This process is for-

mulated as follows:

f t+1
l−1 = LA(f t

l−1,P), f0
l−1 = MLP(fl−1), t ∈ {0, 1}.

(12)
Then, we employ residual expansion to derive encoder fea-
ture fl of the l-th layer as follows:

f̃l−1 = MLP(f1
l−1 ∥ f2

l−1) + MLP(fl−1). (13)

Subsequently, we performed the Farthest Point Sampling
(FPS) algorithm sampling to obtain fl and Pl.
Local aggregation. The LA architecture is detailed in the
top panel of Figure 3. For each point xi ∈ Pl−1, we collect
its KNN neighbors represented as fk

xi
∈ Rk×3. Meanwhile,

we extract the feature representation fi for each point and
obtain its neighboring features fk

i ∈ Rk×d. These features
are concatenated to form f̃k

i ∈ Rk×2d. To refine the feature
f̃k
i , an MLP followed by a softmax function is applied to

emphasize significant elements, expressed as:

f̂i = SumPooling(Softmax(MLP(f̃k
i ))⊙ f̃k

i ), (14)

where ⊙ denotes the Hadamard product, SumPooling(·)
squeezes the input features into a single feature by sum-
mation. After this operation for each point in the previous
layer, the locally aggregated feature is obtained as f t+1

l−1 =

{f̂i}nl
i=1 ∈ Rnl×dl .

Decoder
Our decoder, as illustrated in Figure 3, is designed with a
cross-attention mechanism. The l-th layer of the decoder,
denoted by Dl, processes the input features fl−1 and hl to
produce the output decoder feature hl−1.

The refinement of the decoder feature hl involves estab-
lishing feature correlations with fl−1. We designate fl−1 as

the query and hl as the key-value pair and apply a linear
transformation φ(·) to map them into distinct feature spaces:

{Q,K, V } = {φ (fl−1) , φ (US (hl)) , φ (US (hl))} , (15)

where US(·) denotes an up-sampling operation. In particu-
lar, when l = λ, hl = fl.

Then, we employ multi-head cross attention (MHCA), as
described in (Vaswani et al. 2017), to generate a feature that
captures the correlation between the encoder and decoder
features as follows:

h̃l−1 = MLP(MHCA(Q,K, V )). (16)

Finally, we use the skip connection to produce the decoder
feature of the previous layer as

hl−1 = MLP
(
h̃l−1 ∥ fl−1

)
∈ Rnl−1×dl−1 . (17)

Loss Function
We utilize the InfoCD loss, as introduced in (Lin et al.
2023), to quantify the discrepancy between the denoised and
ground-truth point clouds. The InfoCD loss is formulated as
follows:

LInfoCD ∝ CD(P̂,P) +
1

τ
Reg(P̂,P), (18)

where CD denotes the Chamfer distance, a metric that as-
sesses the fidelity of denoised point cloud P̂ to ground truth
P . The second term serves as a regularization to promote the
alignment of point cloud distributions, and the parameter 1

τ
is a scaling factor that adjusts the influence of the regular-
ization term.

To train our classifier network, we define the adaptive
classifying loss as follows:

LAE(ρ̂, ρ) = |ρ̂− ρ|2, (19)

where ρ is the ground-truth recoverability factor correspond-
ing to ρ̂.

Experiments
Datasets and Settings
Training dataset. Our framework’s training is conducted
utilizing the PUNet dataset (Yu et al. 2018). The train-
ing dataset comprises 40 meshes, from which point clouds
are derived at 10K, 30K, and 50K resolutions, totaling 120
training point clouds.Noisy data is generated by introducing
Gaussian noise with a standard deviation that varies from
0.05 to 0.2 times the radius of the bounding sphere.
Testing datasets. We compare our method with competing
approaches on the PUNet dataset (Yu et al. 2018) at 10K
and 50K resolutions, yielding 40 point clouds. We also em-
ploy the real-scanned Kinect dataset (Wang, Liu, and Tong
2016) to assess the generalization of our method.The Paris-
rue-Madame dataset (Serna et al. 2014), featuring real Paris
street scenes scanned with a 3D mobile laser scanner, was
evaluated for its real-world noise and serves as a solid bench-
mark for assessing our method’s performance on actual data.
Implementation. Our method, developed in PyTorch, is
trained on a NVIDIA GeForce RTX 3090 GPU, employing



Method

10K points 50K points
1% noise 2% noise 3% noise 1% noise 2% noise 3% noise

CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

PCN (2020) 3.515 1.148 7.467 3.965 13.067 8.737 1.049 0.346 1.447 0.608 2.289 1.285
GPDNet (2020) 3.780 1.337 8.007 4.426 13.482 9.114 1.913 1.037 5.021 3.736 9.705 7.998

DMR (2020) 4.482 1.722 4.982 2.115 5.892 2.846 1.162 0.469 1.566 0.800 2.432 1.528
PointFilter (2021) 2.461 0.443 3.534 0.862 5.089 1.849 0.758 0.182 0.907 0.251 1.599 0.710

Score (2021) 2.521 0.463 3.686 1.074 4.708 1.942 0.716 0.150 1.288 0.566 1.928 1.041
PDFlow (2022) 2.126 0.381 3.246 1.010 4.447 1.999 0.651 0.164 1.173 0.581 1.914 1.210

DeepPSR (2023) 2.353 0.306 3.350 0.734 4.075 1.242 0.649 0.076 0.997 0.296 1.344 0.531
MAG (2023) 2.498 0.459 3.629 1.054 4.686 1.923 0.706 0.146 1.287 0.557 1.931 1.045

IterativePFN (2023b) 2.056 0.218 3.043 0.555 4.241 1.376 0.605 0.059 0.803 0.182 1.971 1.012

Ours 1.880 0.219 2.581 0.515 3.079 0.946 0.515 0.069 0.676 0.188 1.304 0.655

Table 1: Quantitative evaluation on PUNet (Yu et al. 2018) with CD and P2M metrics (×104). The best and second-best results
are highlighted in bold and underlined, respectively.

the Adam optimizer with a learning rate of 1×10−4. Prior to
training, point clouds are normalized to a unit sphere. Then,
we employ the FPS and KNN algorithms to sample 1K-sized
patches. We derive the entropy values for the adaptive clas-
sifier’s training for the patches. The training process com-
menced with a pre-training phase for the adaptive classifier,
followed by a joint training phase with the ASDN network,
leveraging the pre-trained classifier.

Method
Kinect

CD P2M

PCN (2020) 22.48 13.29
GPDNet (2020) 23.09 11.78

PointFilter (2021) 18.85 10.29
Score (2021) 19.66 11.08

PDFlow (2022) 19.87 11.69
IterativePFN (2023b) 18.69 10.92

Ours 18.22 10.38

Table 2: Quantitative evaluation on Kinect v2.

Quantitative Results
We evaluate our method and the competing approaches on
synthetic data (Yu et al. 2018), as shown in Table 1. The re-
sults demonstrate that our method achieves excellent perfor-
mance on both sparse 10K and dense 50K point clouds. We
found that at low resolution and low noise levels, PDFlow
and IterativePFN achieve good results, with IterativePFN
maintaining strong performance even on 50K point clouds
under low noise levels. However, our method consistently
outperforms the tested methods, especially when the noise
level reaches higher levels, such as 3%. Under high noise
levels, the results of other methods are less ideal, while our
method significantly surpasses them, effectively demonstrat-
ing the efficacy of our approach. Next, we further evaluate
our performance on the real-world scanned data (Wang, Liu,

and Tong 2016) and list the results in Table 2. As we can see,
our method outperforms the other methods in comparison in
the sense that the CD values are significantly smaller.

Qualitative Results
In Figure 5, we demonstrate the denoised results on PUNet
(Yu et al. 2018), utilizing 50K points with a noise level of
2%. The color map illustrates the P2M distances, indicat-
ing that our denoised results closely approximate the ground
truth. Furthermore, our method delivers visually pleasing re-
sults and more accurately recovers geometric features com-
pared to all other competing methods. Our results are free
from artifacts in smooth areas, a notable advancement over
existing approaches.In Figure 6, we present results on a
street scene (Serna et al. 2014). As we can see, our method
not only effectively restores the details of the car but also
significantly reduces noise and irregular shapes in the point
cloud.

Ablation
1% noise 2% noise 3% noise

CD P2M CD P2M CD P2M

w/o AC 1.973 0.230 2.794 0.555 3.580 1.108
d = 64 1.870 0.222 2.575 0.526 2.976 1.023
L = 3 2.016 0.245 2.785 0.556 3.829 1.317
L = 5 1.865 0.247 2.532 0.549 2.936 1.134

Ours 1.880 0.219 2.581 0.515 3.079 0.946

Table 3: Ablation study results on 10K points with different
noise levels.

Ablation Studies
To confirm the effectiveness of our early stopping denoising
strategy, we conduct an experiment that removed a key com-
ponent—the adaptive classifier (AC)—from our Adaptive
Stopping Denoising Network (ASDN) and compared its per-
formance to the full ASDN setup. This comparison helps us



Figure 5: Visual results of point-wise P2M distance for shapes at 50K resolution with 2% Gaussian noise.

Figure 6: Visual results for a real-world point cloud scene.

understand how crucial the AC is for achieving better results
during the denoising process. The comparison shows that
our proposed early-stopping strategy can help our method
produce better denoised results, as shown in Table 3. Subse-
quently, we expand the feature dimensions in each layer of
our network to create a larger network variant, establishing a
baseline with the initial feature dimension f0 set at 32, then
escalated to 64. In addition, we vary the number of layers L
in our ASDN network to explore its impact on performance,
with L originally set to 4. This series of ablation studies pro-
vides a comprehensive understanding of the contribution of
each component to the overall network efficacy.

Conclusion
In this paper, we have proposed a U-Net architecture incor-
porating an adaptive classifier for point cloud denoising. Our

classifier employs a newly introduced recoverability factor
to evaluate the denoising completion, enabling the adaptive
stopping of the denoising process. In contrast to previous
approaches, our method brings a novel perspective to ad-
dress the potential issue of over-denoising on those already
clean points during the denoising process. Experimental re-
sults demonstrate that our method outperforms state-of-the-
art techniques. Our adaptive stop-denoising strategy shows
promise in various point cloud tasks, such as completion and
normal estimation. Future work will focus on analyzing the
theoretical foundations of point cloud entropy and the recov-
erability factor.
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